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Abstract— Learning-based approaches for image super-resolution (SR) have attracted the attention of researchers in the past few years. 

We present a novel self-learning approach with multiple kernel learning for adaptive kernel selection for SR. The Multiple Kernel Learning 

is theoretically and technically very attractive, because it learns the kernel weights and the classifier simultaneously based on the margin 

criterion. With theoretical supports of kernel matching search method and Optimization approach (Gradient) are proposed in SR framework 

learns and selects the optimal Kernel ridge regression model when producing an SR image, which results in the minimum SR 

reconstruction error. Evaluate this method on a variety of images, and obtain very promising SR results. In most cases, this method 

quantitatively and qualitatively outperforms bi-cubic interpolation and state-of-the-art learning based SR approaches. 

Index Terms— Kernel ridge regression, Multiple kernel learning, Self-learning, Super-resolution, Sparse Representation. 

   

——————————      —————————— 

1 INTRODUCTION                                                                     

UPER Resolution (SR) has been an active research topic in 
the areas of image processing and computer vision. It is a 
process to produce a high-resolution (HR) image from one 

or several low-resolution (LR) images.  Conventional methods 
are based on the reconstruction of multiple LR images, and 
they approach SR as solving an inverse problem, i.e., they re-
cover the HR image as a linear operation of multiple LR 
patches. Recently, learning-based SR approaches which focus 
on modeling the relationship between training low and high-
resolution images have also attracted researchers, while the 
existence of the aforementioned relationship is typically seen 
in natural images [1], [2]. However, the difficulty of learning-
based SR methods lies on the selection of proper training data 
and proper learning models for SR from an unseen target im-
age.  
      In machine learning, support vector regression (SVR) [3] is 
considered as an extension of support vector machine (SVM), 
which exhibits excellent generalization ability in predicting 
functional outputs without any prior knowledge or assump-
tion on the training data (e.g., data distribution, etc.). SVR is 
capable of fitting data via either linear or nonlinear mapping, 
and the use of SVR has been applied in applications of data 
mining, bioinformatics, financial forecasting, etc. Previously, 
SVR has been shown to address SR problems in [1], [4]; how-
ever, these SVR-based SR approaches require the collection of 
training low and high-resolution image pairs in advance, and 
this might limit their practical uses. In this paper, we propose 
a self-learning framework for SR. We not only present quanti-
tative and qualitative SR results to support our method, we 
will also provide theoretical backgrounds to verify the effec-
tiveness of our learning framework.  
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      The remainder of this paper is organized as follows. Prior 
SR works are discussed in Section 2. Section 3 details the novel 
self-learning approach with multiple kernel learning for adap-
tive kernel selection for SR. Section 4 provides empirical re-
sults on a variety of images with different magnification fac-
tors, including comparisons with several SR methods. Finally, 
Section 5 concludes this paper. 

2 RELATED WORK  

2.1 Reconstruction-Based SR  

Typically, reconstruction-based SR algorithms require im-
agepatches from one or several images (frames) when synthe-
sizing the SR output. This is achieved by registration and 
alignmentof multiple LR image patches of the same scene with 
sub-pixel level accuracy [5]–[7]. For single-image reconstruc-
tion-based SR methods, one needs to exploit self similarity of 
patches within the target LR image. With this property, one 
can thus synthesize each patch of the SR image by similar 
patches in the LR version. However, reconstruction-based 
methods are known to suffer from ill-conditioned image regis-
tration and inappropriate blurring operator assumptions (due 
to an insufficient number of LR images) [8]. Moreover, when 
an imagedoes not provide sufficient patch self-similarity, sin-
gle-image reconstruction based methods are not able to pro-
duce satisfying SR results [9]. Although some regularization 
based approaches [5], [7], [10] were proposed to alleviate the 
above problems, their SR results will still be degraded if only a 
limited number of low-resolution images/patches are availa-
ble or if a larger image magnification factor is needed. Accord-
ing to [8], [11], the magnification factor of reconstruction-
based SR approachesis limited to be less than 2 for practical 
applications.  
      A recent approach proposed in [12] alleviates this limita-
tion by learning image prior models via kernel principal com-
ponent analysis from multiple image frames. Since single-
image SR does not require multiple LR imagesas inputs, it 
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attracts the interest from researchers and engineers due to 
practical applications. As discussed above, methods assuming 
the existence of image patch self-similarity need to search for 
similar patches from an input image when synthesizing the SR 
output. However, the assumptions of self-similarity might not 
always hold, and the associated SR performance varies with 
the similarity between different categories of image patches. 
The nonlocal means (NLM) method [13] is one ofthe repre-
sentatives which advocates such a property in image related 
applications.  
2.2 Learning-Based SR  

In the past few years, much attention has been directed to 
learning (or example) based SR methods (e.g., [1], [14],[15]), 
which can be considered as single image SR  approaches uti-
lizing the information learned/observed from training im-
agedata. With the aid of training data consisting of low and 
high resolution image pairs, learning-based methods focus on 
modeling the relationship between the images with different 
resolutions (by observing priors of specific image or context 
categories). For example, Chang et al. [15] applied the tech-
niqueof locally linear embedding (LLE) for SR purposes. They 
collected a training data set with multiple low and high-
resolution image pairs. For each patch in an input LR image, 
they proposed to search for similar patches from LR training 
images, and they used the corresponding training HR patches 
to linearly reconstruct the SR output (using the weights de-
termined by LLE). Ni et al. [1] proposed to use support vector 
regression (SVR) to fit LR image patches and the pixel value of 
the corresponding HR images in spatial and DCT domains.It is 
not surprisingly that, however, the performance of typical 
learning-based methods varies significantly on the training 
data collected. As a result, in order to achieve better SR results, 
oneneeds to carefully/manually select the training data. In 
such cases, the computation complexity of training and diffi-
culty of training data selection should be both taken into con-
sideration.  
      Recently, Glasneret al. [2] proposed to integrate both clas-
sical and example-based SR approaches for single imageSR. 
Instead of collecting training image data beforehand, they 
searched for similar image patches across multiple down-
scaled versions of the image of interest. It is worth noting that 
this single image SR method advocates the reoccurrence of 
similar patches across scales in natural images, so that their 
approach simply down grades the resolution of the input im-
age and perform example-based SR. In other words, once simi-
lar patches are found in different scaled versions, classical SR 
methods such as [7], [16], [17] can be applied to synthesize the 
SR output. Although very promising SR examples were 
shown in [2], there is no guarantee that self-similarity alway-
sexists within or across image scales, and thus this prohibits 
the generalization of their SR framework for practical prob-
lems.Moreover, it is not clear what is the preferable magnifica-
tionfactor when applying their approach (SR images with dif-
ferent magnification factors were presented in [2]).  
2.3 Sparse Representation for SR  

Originally applied to signal recovery, sparse coding [18] has 
shown its success in image related applications such as im-
agede-noising [19], and it was first applied to SR  by Yang et 

al.[20], [21]. They considered the image patch from HR images 
as a sparse representation with respect to an over-complete 
dictionary composed of signal-atoms. They suggested that, 
under mild conditions, the sparse representation of high-
resolution images can be recovered from the low-resolution 
image patches [20], [21]. They used a small set of randomly 
chosen image patches for training, and implied that their SR 
method only applies to images with similar statistical nature. 
Kim and Kwon [22], [23] proposed an example-based single 
image SR for learning the mapping function between the low 
and high-resolution images by using sparse regression and 
natural image priors. However, blurring and ringing effects 
near the edges exist in their SR results, and additional post-
processing techniques are still needed to alleviate this prob-
lem. Recently,Yang et al. [24] extended the framework of [2]. 
Based on the assumption of image patch self-similarity, they 
concatenated high and low-resolution image pairs from the 
image pyramid and jointly learned their sparse representation. 
When super-resolvean LR input patch, they searched for simi-
lar patches from the image pyramid and use the associated 
sparse representation (the HR part) to predict its final SR ver-
sion.  
 

3. THE PROPOSED SELF-LEARNING 

APROACHTO SINGLE IMAGE SUPER-
RESOLUTION 

3.1 Image patch Categorization 

In a First step, the input image size is up-scaled into Magni-
tude factor. The up-scaling can be done by bi-cubic interpola-
tion. To alleviate edge artifacts due to the bi-cubic interpola-
tion, the input image is padded by four pixels on each side by 
replicating border pixels. The Image patch-based approach 
(developed at the same time as the texture-based prior pre-
sented here) for image-based rendering. For their application 
the likelihood function was multi-modal, and a prior was 
needed to help ensure consistency across the output image. 
For our application, a small image patch around each high-
resolution image pixel is selected. We can learn a distribution 
for this central pixel’s intensity value by examining the values 
at the centers of similar patches from other images. 
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The central pixel is held back, so that when a match is made 
between this neighbourhood vector and a new trial patch, the 
central pixel value can be returned as a prototype for what 
value we might expect to find associated with the centre of the 
new patch. The patches in the image are normalized to sum to 
unity, and centre weighted as in 2-dimensional Gaussian ker-
nel. For simplicity, the patches are always chosen to be 
squares with an odd number of pixels to a side, and the 
Gaussian kernel standard deviations are chosen to be equal to 
the floor of half the width of the square, i.e. a 3×3 patch would 
use a Gaussian with a standard deviation of 3 pixels. 
3.2 Sparse Representation 

Sparse representations are representations that account for 
most or all information of a signal with a linear combination of 
a small number of elementary signals called atoms. Super-
resolution as sparse representation in dictionary of raw image 
patches. The technique of finding a representation with a 
small number of significant coefficients is often referred to as 
Sparse Coding. Decoding merely requires the summation of 
the relevant atoms, appropriately weighted, however, unlike a 
transform coder with its invertible transform, the generation 
of the sparse representation with an over-complete dictionary 
is non-trivial. The image patch self-similarity, they concatenat-
ed high and low-resolution image pairs from the image pyra-
mid and jointly learned their sparse representation. The super-
resolve an LR input patch, they searched for similar patches 
from the image pyramid and use the associated sparse repre-
sentation (the HR part) to predict its final SR version. 
3.3 Support Vector Regression  

Support vector regression (SVR) is an extension of support 
vector machine, which is able to fit the data in a high-
dimensional feature space without assumptions of data distri-
bution. Similar to SVM, the generalization ability makes the 
SVR very powerful in predicting unknown outputs, and the 
use of SVR has been shown to produce effective SR outputs.  
The observed SVR will be applied to predict the final SR out-
put for a test LR input. Our work in first synthesizes the HR 
version from the test input using bi-cubic interpolation. To 
refine this HR image into the final SR output, we derive the 
sparse representation of each patch and update the centered 
pixel value for each using the learned SVR models. While this 
refinement process exhibits impressive capability in produc-
ing SR images, its need to collect training LR/HR image data 
in advance is not desirable. 
3.4 Kernel ridge regression of Optimization model 

A parameterized combination functions and learns the param-
eters by solving an optimization problem. This optimization 
can be integrated to a kernel-based learner or formulated as a 
different mathematical model for obtaining only the combina-
tion parameters. In order to incorporate SVR with KRR (Ker-
nel Ridge Regression), mixture probability should be formu-
lated with SVR outputs Probabilistic output from SVR was 
done in phase I researches, but they didn’t consider optimiza-
tion mixture probability. To find mixture probability with SVR 
in this research distance from Gradient, histograms and inter-
polation were used in this module.  

    A Gradient Pyramid approach is obtained by applying a set 
of 4 directional gradient filters (horizontal, vertical and 2 di-
agonal) to the Gaussian Pyramid at each level. At each level, 
these 4 directional Gradient Pyramids are combined together 
to obtain a combined gradient pyramid that is similar to a La-
placian pyramid. The gradient pyramid solution is therefore 
the same as the image angle using the Laplacian pyramid 
method except replacing the Laplacian pyramid with the 
combined Gradient Pyramid.  
     A good solution to suppress halos is to apply the scene 
gradients to adjust the gradient of the synthesized SDR image. 
The scene gradient information is adaptively captured by set-
ting the different exposure levels, i.e., the scene gradients are 
captured through the local adaptation to the scene luminance 
for an window M × M centered at (x, y). Technically, the scene 
gradient of a point is reflected by the gradient that is perceiva-
ble by human eyes, called visible gradient, and that can be 
measured by counting the number of visible differences of 
luminance’s between neighboring pixels in the window. 
        To compute the quantity of the visible gradient              

 by     
 

           
       These exposure levels lead to different gradient magni-
tudes because the gradient magnitude depends on the image 
luminances and the image luminance depends on the expo-
sure level. The scene gradient extraction is a process to find 
gradient G(x, y) which maximizes the quantity of the visible 
gradient, 

 
In this gradient extraction, the pixels positions are estimated 
along with x-coordinate and y-coordinate. In vector calculus, 
the gradient of a scalar field is a vector field that points in the 
direction of the greatest increase rate in the scalar, and in the 
magnitude. The variation in space of any quantity can be rep-
resented (e.g. graphically) by a slope in general. The gradient 
represents the steepness and direction of the slope. 

 
4. EXPERIMENTAL RESULTS  
For companding color images we first convert RGB to the HSV 
space. The value (V) is then run through the companding loop 
and a compressed V is obtained when the iterations stop. This 
compressed V is combined with the original hue (H) and the 
original saturation divided by a factor, and converted back to 
RGB to get the compressed color image. This is the same as 
what we did for color HDR image compression. Similarly 
when we’re going to expand a compressed color image up to 
one-step range expansion is done on its V channel. The satura-
tion is multiplied by the same the hue is kept the same, and 
they are combined with the expanded V to get the HDR color 
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image back. 
      The assessment method is the recently proposed objective 
assessment especially designed for tone mapped images. It 
combines a multi-scale structural fidelity measure and a 
measure of image naturalness. The structural fidelity measure 
is a full-reference assessment based on the structural similarity 
(SSIM) index, and the naturalness measure is a no-reference 
assessment based on statistics of good-quality natural images. 
This method provides a single quality score of an entire image. 
The combined single quality is represented by ‘Quality’ in this 

study. 
     The test image is matched with matched database to identi-
fy high frequency regions. The PSNR fraction measure of qual-
ity of reconstruction of lossy compression codecs (e.g., for im-
age compression). The signal in this case is the original data, 
and the noise is the error introduced by compression. 

 

 

 

 

 

TABLE 1 

STRUCTURAL SIMILARITY RATIO FOR DIFFERENT METHODS COMPARISON 

 

  Images  Yang et al LLE  Proposed System 

Child  SSIM 0.8392 0.8400 0.9165 

fruit SSIM  0.9751 0.9766 0.9899 

lena  SSIM  0.9321 0.9653 0.9997 

 
TABLE 2 

 COMPARISONS OF SR IMAGES PRODUCED BY DIFFERENT METHODS WITH A MAGNIFICATION FACTOR OF 2. 

 

 Boat cars skyview lena Child Fruit station airplane tree Susan 

Bicubic 
LLE 
Yang et al. 
Wang et al. 
Glasner et al. 
SVR 
Ours 

30.21 
25.61 
29.66 
30.36 
31.23 
30.46 
31.21 
 

30.87 
26.87 
30.34 
30.89 
30.10 
31.32 
32.52 

27.24 
22.73 
27.84 
27.52 
28.06 
27.56 
30.20 

34.60 
28.63 
32.92 
34.54 
35.62 
35.34 
45.94 

27.45 
24.05 
27.83 
27.60 
27.92 
42.08 
48.05 

31.97 
27.52 
32.09 
32.48 
35.39 
33.06 
32.98 
 

25.12 
22.46 
25.71 
25.44 
25.61 
25.63 
30.76 

25.64 
23.24 
25.25 
25.91 
26.35 
25.93 
26.22 

26.87 
22.16 
27.59 
27.50 
26.28 
27.22 
28.85 

33.74 
28.61 
33.44 
34.38 
33.86 
33.77 
35.26 
 

 
 
 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

Fig 1. 
Example SR results (with a magnification factor 4) and the corresponding PSNR values. Top row: Ground truth image, SR image 
produced by Genuine Fractals (software available at www.ononesoftware.com), Freeman et al. [14] (PSNR: 21.34), Fattal et al. 
[31] (PSNR: 21.36), Wang et al. [4] (PSNR: 23.86).Bottom row: Kim and Kwon [22], [23] (PSNR: 20.93), Glasner et al. [2] (PSNR: 
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20.94), LLE [15] (PSNR: 29.8), Yang et al. [21] (PSNR: 24.43), SVR(PSNR: 31.14)and ours(PSNR:48.05). 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

Fig 2. 
Example SR results (with a magnification factor 4) and their PSNR values. Top row: ground truth HR image, bicubic interpola-
tion (PSNR: 28.19), LLE [15] (PSNR: 26.85). Bottom row: Yang et al. [21] (PSNR: 26.12), Glasner et al. [2] (PSNR: 24.87), SVR 
(PSNR:28.66)and ours (PSNR: 32.63s). Note that nearest neighbor interpolation is applied to degrade the image resolution in this 
example. 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
Fig 3. 

Example SR results (with a magnification factor 2) and their PSNR values. Top row: ground truth HR image, bicubic interpola-
tion (PSNR: 29.70), LLE [15] (PSNR: 27.43). Bottom row: Yang et al. [21] (PSNR: 28.86), Glasner et al. [2] (PSNR: 28.81),SVR 
(PSNR: 32.15 ) and ours (PSNR: 32.63). Note that nearest neighbor interpolation is applied to degrade the image resolution in 
this example. 

 

5. CONCLUSION  
This paper proposed a novel in-scale self-learning framework 

for single image SR and the system is tested accurately with all 
testing methods. Since the project is heavily used to view the 
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detail about image edge preserving and concerned with the 
color features. This project is highly concerned in the organi-
zation and it has been successfully implemented. 
         The analysis-synthesis sub band architectures and 
smooth gain control, gives good range compression without 
disturbing halos. We describe some simple implementations 
of sub band range compression, and show that the results are 
competitive with the leading techniques 
        A novel definition for image detail as fluctuations be-
tween local minima and maxima. We proposed a simple algo-
rithm to smooth an input image. By recursively performing 
the smoothing with extrema detection at single scales, we per-
formed a decomposition of the input image into multiple-scale 
layers of detail and a coarse residual. Our algorithm smoothes 
high-contrast surface while preserving significant edges. Final-
ly, we exploited this ability by applying our decomposition in 
a variety of applications. 
          In the future, it is likely that hardware wavelet pro-
cessing will be common in image processing systems, and it 
will be straightforward to utilize this hardware for range 
compression. Adding features such as robustness, hardware 
memory and computation efficiency, color consideration, and 
automatic selection of parameters in super-resolution methods 
will be the ultimate goal for the Super-Resolution researchers 
and practitioners in the future. 
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